De novo Transcriptome Assembly and Differential Gene Expression analysis Identify Drought Resistant genes in Cynanchum thesioides (Xerophytic shrubs)

RNA sequencing (RNA Seq) is revolutionizing the study of the transcriptomes. Highly sensitive and accurate tool for measuring expression across the transcriptome, RNA Seq provides researchers with visibility into previously undetected changes occurring in disease states, in response to therapeutics, under different environmental conditions, and across a broad range of other study designs. RNA Seq allows researchers to detect both known and novel features in a single assay, enabling detection of transcript isoforms, gene fusions, single nucleotide variants, and other features without the limitation of prior knowledge.

We here outline the work published by Zhang X et al that establishes genes responsible for resistant to drought stress.

De Novo transcriptome assembly followed by gene identification identified 55,268 unique genes. Gene annotation was performed for 36,265 genes to capture information like conserved domains, gene ontology terms and metabolic pathways. Differential gene expression analysis identifies genes that are upregulate under drought stress in pathways such as carbon metabolism, starch and sucrose metabolism, amino acid biosynthesis, phenyl propanoid biosynthesis and plant hormone signal transduction.

Transcriptome assembly and Differential gene expression Analysis Workflow

Transcriptome assembly & Differential gene expression Analysis Workflow

Here we observed how next generation sequencing for transcriptome analysis coupled with Bioinformatics tools for assembly and differential gene expression helped in screening out functional genes which showed high resistance stress under drought conditions. Hundreds of candidate genes were identified under severe drought stress, including transcriptional factors such as MYB, G2-like, ERF, C2H2, NAC, NF-X1, GRF, HD-ZIP, HB-other, HSF, C3H, GRAS, WRKY, bHLH and Trihelix. Weighted gene co-expression network analysis displayed key hub genes related to drought stress. These genes could be valuable resource for further investigation into the molecular mechanism for drought stress in C. thesioides.

Reference: https://www.sciencedirect.com/science/article/abs/pii/S0378111919305426

Related articles

Structural Variation identification in Breast Cancer with Whole Genome Sequencing using Long reads

doi: https://doi.org/10.1101/847855 Link: https://www.biorxiv.org/content/biorxiv/early/2019/11/19/847855.full.pdf Advancement of high throughput sequencing technologies have enabled...

Next Generation Sequencing reveals transcriptional analysis of Masson Pine (Pinus massoniana) under High CO2 Stress

Link: https://www.mdpi.com/2073-4425/10/10/804/htm Citation: Genes 2019, 10(10), 804; https://doi.org/10.3390/genes10100804 Masson pine (Pinus massoniana) is a...

Human Chromosome Y Sequence Assembly using Oxford Nanopore Reads

First Human chromosome Y sequence was published nearly two...

Case Studies